Sudoku using BackTracking
Backtracking means switching back to the previous step as soon as we determine that our current solution cannot be continued into a complete one.
M = 9
def puzzle(a):
for i in range(M):
for j in range(M):
print(a[i][j],end=" ")
print()
def solve(grid, row, col, num):
#Row wise check if num is there
for x in range(9):
if grid[row][x] == num:
return False
#column wise check if num is there
for x in range(9):
if grid[x][col] == num:
return False
#check if num is in 3*3 grid
startRow = row - row % 3
startCol = col - col % 3
for i in range(3):
for j in range(3):
if grid[i + startRow][j + startCol] == num: #0,0==4 0,1 0,2 1,0 1,1 1,2 2,0=4
return False
return True
def Suduko(grid, row, col):
#Check end of row and column
if (row == M - 1 and col == M ):
return True
#Move to next row,first column when last column reached in row
if col == M:
row += 1
col = 0
#If element is already there move to next column
if grid[row][col] > 0:
return Suduko(grid, row, col + 1)
#Fill cells with 0 with a suitable number from 1 to 9
for num in range(1, M + 1, 1):
if solve(grid, row, col, num):
grid[row][col] = num
if Suduko(grid, row, col + 1):
return True
grid[row][col] = 0
return False
grid = [
[2, 5, 0, 0, 3, 0, 9, 0, 1],
[0, 1, 0, 0, 0, 4, 0, 0, 0],
[4, 0, 7, 0, 0, 0, 2, 0, 8],
[0, 0, 5, 2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 9, 8, 1, 0, 0],
[0, 4, 0, 0, 0, 3, 0, 0, 0],
[0, 0, 0, 3, 6, 0, 0, 7, 2],
[0, 7, 0, 0, 0, 0, 0, 0, 3],
[9, 0, 3, 0, 0, 0, 6, 0, 4]]
if (Suduko(grid, 0, 0)):
puzzle(grid)
else:
print("Solution does not exist:(")
Comments
Post a Comment